
Computers & Industrial Engineering 99 (2016) 280–286
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A tree search based combination heuristic for the knapsack problem
with setup
http://dx.doi.org/10.1016/j.cie.2016.07.021
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: m.khemakhem@psau.edu.sa (M. Khemakhem), khalil.chebil@

issatm.rnu.tn (K. Chebil).
Mahdi Khemakhem a,⇑, Khalil Chebil b
aCollege of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Kingdom of Saudi Arabia
b LOGIQ, University of Sfax, Tunisia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 July 2015
Received in revised form 29 March 2016
Accepted 26 July 2016
Available online 27 July 2016

Keywords:
Knapsack problems
Setup
Tree search
Combination
Filter-and-fan metaheuristic
Avoid duplication
Knapsack Problems with Setups (KPS) have received increasing attention in recent research for their
potential use in the modeling of various concrete industrial and financial problems, such as order accep-
tance and production scheduling. The KPS problem consists in selecting appropriate items, from a set of
disjoint families of items, to enter a knapsack while maximizing its value. An individual item can be
selected only if a setup is incurred for the family to which it belongs. In this paper, we propose a tree
search heuristic to the KPS that generates compound moves by a strategically truncated form of tree
search. We adopt a new avoid duplication technique that consists in converting a KPS solution to an inte-
ger index. The efficiency of the proposed method is evaluated by computational experiments involving a
set of randomly generated instances. The results demonstrate the impact of the avoiding duplication
technique in terms of enhancing solution quality and computation time. The efficiency of the proposed
method was confirmed by its ability to produce optimal and near optimal solutions in a short computa-
tion time.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

We will refer to the Knapsack Problem with Setup as KPS. It is
described as a knapsack problem with additional fixed setup costs
discounted both in the objective function and in the constraints.
This problem is particularly prevalent in production planning
applications where resources need to be set up before a production
run.

Our interest in this model was originally motivated by practical
problems at a production project with a leading manufacturer and
supplier of agro-alimentary glass packing industry. This company
produces several types of products, including bottles, flacons, and
pots. The most important phase in the manufacturing process, is
the phase of shaping. In fact, to change the production from one
product family to another, the production machinery must be set
up and molds must be changed in the molding machine. These
changes in the manufacturing process require significant setup
time and costs. Assume at time T, the company receive some
orders (jobs), wich belong to N product families. Each product fam-
ily i, has ni jobs. Also assume that these jobs should be produced in
the next planning period and the company’s manufacturing capac-
ity is fixed and can’t be changed in the short term. Accordingly, the
company needs to decide on how to choose orders so as to maxi-
mize the total profit. This represents a typical case involving a
knapsack problem with setup model that can be used to solve this
problem.

The knapsack problem with setup is defined by a knapsack
capacity b 2 N and a set of N classes of items. Each class
i 2 f1; . . . ;Ng consists of ni items and is characterized by a negative
integer f i and a non-negative integer di representing its setup cost
and setup capacity consumption, respectively. Each item
j 2 f1; . . . ;nig of a class i is labeled by a profit cij 2 N and a capacity
consumption aij 2 N. The objective is to maximize the total profit
of the selected items minus the fixed costs incurred for setting-
up the selected classes.

The KPS can be formulated by a 0� 1 linear program as follows:

Max z ¼
XN
i¼1

Xni
j¼1

cijxij þ
XN
i¼1

f iyi ð1Þ

s:t:
XN
i¼1

Xni
j¼1

aijxij þ
XN
i¼1

diyi 6 b ð2Þ

xij 6 yi 8i 2 f1; . . . ;Ng;8j 2 f1; . . . ;nig ð3Þ
xij; yi 2 f0;1g 8i 2 f1; . . . ;Ng; 8j 2 f1; . . . ; nig ð4Þ

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.07.021&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.07.021
mailto:m.khemakhem@psau.edu.sa
mailto:khalil.chebil@ issatm.rnu.tn
mailto:khalil.chebil@ issatm.rnu.tn
http://dx.doi.org/10.1016/j.cie.2016.07.021
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

M. Khemakhem, K. Chebil / Computers & Industrial Engineering 99 (2016) 280–286 281
Eq. (1) represents the KPS objective function. Constraint (2) ensures
that the weight of selected items in the knapsack, including their
setup capacity consumption, does not exceed knapsack capacity b.
Constraints (3) guarantee that each item is selected only if it
belongs to a class that has been set up. Constraints (4) require the
decision variables to be binary, where xij refers to the item variables
and yi to the setup variables. In fact, yi is equal to 1 if the knapsack is
set up to accept items belonging to class i and is equal to 0 other-
wise. xij is equal to 1 if the item j of the class i is placed in the knap-
sack and is equal to 0 otherwise.

The KPS is a generalization of the standard 0–1 Knapsack Prob-
lem (KP), which is known to be an NP-hard problem (Kong, Gao,
Ouyang, & Li, 2015; Martello & Toth, 1990). In fact, it is not difficult
to verify that a special case of the KPS, where N ¼ 1, is equivalent
to the KP. The works of Martello and Toth (1990) and Kellerer,
Pferschy, and Pisinger (2004) provide a thorough overview of the
research so far performed on the KP and its variations which reflect
its ability to closely represent and respond to real world problems.
Chajakis and Guignard (1994) consider a similar problem of KPS,
where the setup cost f i and profit cij of an item j of a class i can
be negative or non-negative. An extra constraint is added to make
sure that if the knapsack is set up for a class i, at least one item of
this class must be selected. Chajakis and Guignard (1994) propose
a dynamic programming algorithm and two versions of a two-
phase enumerative scheme. The experiments show that the
dynamic programming approach is most efficient for correlated
instances with small knapsack capacity. Akinc (2004) presents a
set of algorithms based on several properties of the linear pro-
gramming relaxation of a special case of KPS with no setup capac-
ity consumption, called the Fixed Charge Knapsack Problem
(FCKP). He showed that if the FCKP is solved as an LP and if all
the yi variables obtained are integers, then the optimal solution
is obtained by solving the KP to optimality allocate the remainder
capacity to all xij for which yi ¼ 1. Yang (2006) has, however,
demonstrated the inadequacy of the last proposal by presenting
a counter-example. Mclay and Jacobson (2007) provide three
dynamic programming algorithms to solve the Bounded Setup
Knapsack Problem (BSKP) in a pseudo-polynomial time. The latter
were not, however, practical for solving large problem instances.
Yang (2006) developed an effective branch-and-bound algorithm
and proposed a heuristic method for the KPS. A thorough survey
of the literature on the KSP has recently been presented in the
work of Michel, Perrot, and Vanderbeck (2009) who provided an
extension of the branch-and-bound algorithm proposed by
Horowitz and Sahni (1974).

In this paper, we present a tree search based combination (TSC)
heuristic to solve the KPS. The results from experimental assays on
a randomly generated set of benchmark problems demonstrate the
effectiveness of our approach. The rest of this paper is organized as
follows: Section 2 presents the proposed algorithm. Section 3 eval-
uates the efficiency of the TSC algorithm using a set of randomly
generated instances and compares its performance to CPLEX
12.5. Section 4 concludes by providing a summary and perspec-
tives for future research.

2. Tree search based combination for the KPS

In this section, we start by presenting some preliminary consid-
erations in the knapsack problem with setup that are relevant to
the design of the proposed algorithm. We then move to describe
the general TSC procedure.

2.1. Preliminary considerations

As mentioned earlier, the knapsack problem is a special case of
the KPS (where n ¼ 1). The special structure of KPS allows us to fix
the setup variables (yi ¼ 0 or yi ¼ 1) needed to transform the KPS
into a KP. Let’s consider a set of item classes
Y ¼ i 2 f1; . . . ;Ng=yi ¼ 1f g, where the knapsack is set up to accept
items belonging to each class in Y. We define the KPS[Y] problem as
a sub-problem of KPS. KPS[Y] is a knapsack problemwith a capacity
b� r and an objective function minimized by a negative integer
setup cost d. Then, the KPS[Y] can be formulated by a KP 0–1 linear
program as follows:

Max z ¼
X
i2Y

Xni
j¼1

cijxij þ d ð5Þ

s:t:
X
i2Y

Xni
j¼1

aijxij 6 b� r ð6Þ

xij 2 0;1f g 8i 2 Y ; 8j 2 f1; . . . ;nig ð7Þ

where

d ¼
X
i2Y

f i and r ¼
X
i2Y

di

With these considerations in mind, we only fix the setup vari-
ables yi to 1 or to 0 and employ CPLEX to determine the best values
for xij, which yields a feasible solution to the KPS. Thus, our neigh-
borhood strategy focuses on finding the optimal combination of
the setup variables Y�.

A KPS solution can be represented by two sets: a set of item
variables X ¼ fxij; i ¼ 1; . . . ;N; j ¼ 1; . . . ;nig and a set of selected
setup variables Y ¼ i 2 f1; . . . ;Ng=yi ¼ 1f g. Consider an example
of KPS instance defined by:

N ¼ 3; b ¼ 90; ½ni; i ¼ 1; . . . ;3� ¼ ½4;3;3�;

½f i; i ¼ 1; . . . ;3� ¼ ½�10;�13;�8�; ½di; i ¼ 1; . . . ;3� ¼ ½6;5;7�;

½cij; i ¼ 1; . . . ;3; j ¼ 1; . . . ;ni� ¼
20 24 19 23
26 22 26
25 24 29

2
64

3
75

and

½aij; i ¼ 1; . . . ;3; j ¼ 1; . . . ;ni� ¼
15 19 14 18
17 17 21
20 19 24

2
64

3
75:

The optimal solution of this example is

X� ¼ f0;0;0; 0
zfflfflfflfflffl}|fflfflfflfflffl{class1

;1;1; 0
zfflffl}|fflffl{class2

;1; 0;1
zfflffl}|fflffl{class3

g;Y� ¼ f2;3g, with an objective value
z ¼ 81. It can be noted that the knapsack is set up to accept only
items from class 2 and 3. Thus, all item variables belonging to class
1 are equal to 0. To obtain the set X�, we just use CPLEX to optimally
solve KPS[Y�], which is, in this example, a knapsack problem with
just 6 items (items belonging to class 2 and 3), with a capacity
b0 ¼ b� r ¼ 90� 5� 7 ¼ 78 and an initial value
z ¼ d ¼ �13� 8 ¼ �21. In the rest of this paper, we consider only
the set Y to represent a KPS solution.

2.2. The TSC approach

The TSC approach is closely similar to the Filter-and-Fan (F&F)
method which was initially proposed in Glover (1998) as a method
for refining solutions obtained by scatter search. The F&F approach
consists in the integration of the filtration and sequential disper-

282 M. Khemakhem, K. Chebil / Computers & Industrial Engineering 99 (2016) 280–286
sion of candidate list strategies used in the tabu search meta-
heuristic (Glover & Laguna, 1999). The method combines a local
search strategy that identifies a local optimum with a F&F proce-
dure that explores larger neighborhoods to overcome local opti-
mality. Once a new best solution is found in the F&F process, the
method switches to the local search phase to identify a local opti-
mum that will be taken as a new root node to the F&F tree for
another run of the F&F approach.

The F&F method was further extended in Rego and Glover
(2002) as an alternative to ejection chain procedures and as a
means for creating combined neighborhood search strategies. This
method has been successfully used to solve several problems, such
as the facility location (Greistorfer & Rego, 2006), protein folding
(Rego, Li, & Glover, 2011), job shop scheduling (Rego & Duarte,
2009), and capacitated minimum spanning tree (Rego & Mathew,
2011) problems. This method has also been recently
(Khemakhem, Haddar, Chebil, & Hanafi, 2012) reported to be
highly effective F&F for the 0–1 multidimensional knapsack
problem.

Like the F&F model, the TSC model can be illustrated by means
of a neighborhood tree where branches represent sub-moves and
nodes identify the solutions produced by these moves. Fig. 1 rep-
resents an illustration of the general process of the TSC algorithm.
The TSC method operates by progressively extending the tree
level by level while keeping only a subset of potentially g1 good
nodes (black nodes) as candidates for further exploration. The TSC
algorithm starts with an empty solution S0, and then proceeds by
choosing the best g1 neighbor solutions to S0 to be members of
the first level of the tree. Let a level index k and LðkÞ be the set
of g1 best solutions at level k. To create the next level k + 1 of
the tree, the TSC method selects a subset of g2 best neighbor
solutions for each solution of LðkÞ to generate g ¼ g1 � g2 trial
solutions for level k + 1 (as a result of applying g2 moves to each
of the g1 solutions at level k). Fig. 1 shows that at level 2 only
nodes S4; S7 and S9 were selected as candidates to create level 3.
In fact, these nodes represent the g1 best solutions at level 2.
The method stops branching as soon as the maximum number
of level Lmax is reached.

Algorithm 1 describes the TSC procedure. It starts by computing
the maximum number of the tree levels Lmax, which is determined
by solving the linear relaxation of the KPS model noted LKPS. In
fact, after several test runs with different values of Lmax, we decide
in favor to use the number of non-zero setup variables in the opti-
mal solution of the LKPS model as Lmax. The linear relaxation of the
KPS model is obtained by replacing constraint (4) with 0 6 xij and
0 6 yi � 1.

As for the usual heuristics and metaheuristics, the TSC algo-
rithm requires the definition of a neighborhood structure using
simple moves so as to produce a set of neighbor solutions and
explore the search space. In our implementation, we use an Add
move which consists in commuting the value of one setup variable
from 0 to 1. Thus, all solutions at a level k have exactly selected k
setup variables. To describe the TSC algorithm, we denote sik the ith
solution at level k and Vðs;gÞ the set of the g best neighbor solu-
tions resulting from the application of the g best add moves to
solution s.

The TSC approach is equipped with a tabu list aiming to drive
the search and keep the method from generating duplicated solu-
tions in the same level. It can be viewed as a precondition for cre-
ating an appropriate level of diversification. We propose a new
avoid duplication technique, which will be described in the coming
section. The TSC algorithm finds a KPS solution in polynomial
OðN2Þ time in the worst case (Lmax ¼ N) and in OðNÞ time in the best
case (Lmax ¼ 1).
Algorithm 1. The general TSC procedure
2.3. Avoid duplication

As previously mentioned, the TSC method progresses level by
level, without backtracking; it only explores the most promising
nodes at each level. Fig. 2 provides an example of a TSC tree used
to perform a compound move from the root node to an enhanced
solution. Gray nodes represent the g1 selected solutions at each
level; the black nodes represent duplicated solutions generated
in one level (i.e. Level 3). To deal with this duplication problem,
we define a vector T of visited solutions at each level of the tree.
According to Fig. 2 and at the end of level 2 generation, we obtain
a tabu list T = fð1j0j1j0j0Þ; ð1j1j0j0j0Þ; ð0j1j1j0j0Þ; ð0j0j1j1j0Þ;
ð0j1j0j1j0Þ; ð1j0j0j1j0Þg. The storage of binary solutions requires
large memory space. In order to reduce the storage requirement,
we adopt a new space reduction technique consisting of converting
a solution to an integer index. In fact, given a solution
S ¼ ð0j1j0j1j1Þ ¼ f2;4;5g; S represents a solution of a KPS instance
with N ¼ 5 classes (where classes are indexed from 1 to 5). We can
consider S as a < 3-combinations > of N classes. Combinations can
refer to the combination of N things taken k at a time. The number
of < k-combinations > of N classes is equal to the binomial coeffi-

cient N
k

� �
¼ N!

k!ðN�kÞ! (see Algorithm 2).

All < k-combinations > of N classes can be put in bijection with

the natural numbers from 0 to N
k

� �
� 1. Algorithm 3 provides the

index of a given solution S and, in turn, Algorithm 4 provides the
combination that corresponds to an index (for a given N and k).
The main purpose of this conversion is to provide a representation,

each by a single number, of all N
k

� �
possible < k-combinations >

of N classes. In order to ensure that, we need to impose some order
on the set of all < k-combinations > of N classes using a lexico-
graphic ordering of the decreasing sequence of elements figuring
in each combination. Table 1 represents an example of lexico-
graphical ordering of all < 3-combinations > list of 5 classes. We

S0

S1

S4

S10 S11

S5

S2

S6 S7

S12 S13

S3

S8 S9

S14 S15

η1

η2 η2 η2
η

Levels

1

2

3
...

Lmax

...
...

...
...

...
...

Fig. 1. Example of a TSC tree (g1 ¼ 3;g2 ¼ 2).

0|0|0|0|0

1|0|0|0|0

1|0|1|0|0

1|1|1|0|0 1|0|1|1|0

1|1|0|0|0

0|0|1|0|0

0|1|1|0|0 0|0|1|1|0

1|0|1|1|0 0|1|1|1|0

0|0|0|1|0

0|1|0|1|0 1|0|0|1|0

1|1|0|1|0 1|0|1|1|0

Level 1

Level 2

Level 3

Fig. 2. Example of duplicate solutions in the TSC tree (g1 ¼ 3;g2 ¼ 2).

M. Khemakhem, K. Chebil / Computers & Industrial Engineering 99 (2016) 280–286 283
note that the order is lexicographical on the characteristic vector
and not on the corresponding binary solution.

Using this technique allows us to significantly reduce the stor-
age requirement. In fact, in the previous example, the tabu list T
represents a list of < 2-combinations > of 5 classes generated at
level 2. It can be represented using only the combination index
of each solution, T = {8,9,7,4,5,6}.

We can also extend this technique to reduce the storage require-
ment of the TSC tree. Fig. 3 presents an equivalent representation of
the TSC tree presented in Fig. 2 using the combination index.

Algorithm 2. Binomial
Algorithm 3. SolutionToIndex
Algorithm 4. IndexToSolution

Table 1
Lexicographical ordering of all < 3-combinations > list of 5 classes.

Index Characteristic vector Binary solution

0 {5,4,3} [0,0,1,1,1]
1 {5,4,2} [0,1,0,1,1]
2 {5,4,1} [1,0,0,1,1]
3 {5,3,2} [0,1,1,0,1]
4 {5,3,1} [1,0,1,0,1]
5 {5,2,1} [1,1,0,0,1]
6 {4,3,2} [0,1,1,1,0]
7 {4,3,1} [1,0,1,1,0]
8 {4,2,1} [1,1,0,1,0]
9 {3,2,1} [1,1,1,0,0]

284 M. Khemakhem, K. Chebil / Computers & Industrial Engineering 99 (2016) 280–286
3. Experimental results

The TSC algorithm was coded in C language and tested on a 2.1
GHZ Intel CoreTMi3. Due to the unavailability of benchmark
instances in the literature, the performance of our algorithm was
evaluated on a randomly generated list of benchmark instances
that resembles the ones presented by Chajakis and Guignard
(1994) and Yang (2006), with a total number of items ntot 2 f500,
1000, 2500, 5000, 10000g and N 2 f5, 10, 20, 30g (available at
0

4

8

9 7

9

2

7 4

7 6

1

5

8

Fig. 3. Representing the TSC tree in

Fig. 4. Effect of TSC stru
https://goo.gl/Ge91cF). Setup cost and capacity consumption are
given by:

f i ¼ �e1
Xni
j¼1

cij

 !
ð8Þ

di ¼ �e1
Xni
j¼1

aij

 !
ð9Þ

where e1 is uniform from [0.15, 0.25].
We choose aij uniformly from [10, 100] and cij ¼ aij þ 10 (a and c

are strongly correlated). In order to make hard instances, we

choose b ¼ 0.5 �PN
i¼1

Pni
j¼1aij, the cardinality of each class ni, for

i ¼ 1; . . . ;N, is in [k� k
10 ; kþ k

10] with k ¼ ntot
N .

After some preliminary test runs to balance the running time
and quality of the results, we decided in favor of the following fixed
set of TSC parameters: we selected g1 ¼ g2 ¼ 5 and fixed the CPLEX
time limit to 2 s when solving each generated knapsack problem.
Fig. 4 shows the results obtained for 20 subsets of test instances
according with respect to the average percentage deviation from
solutions obtained by TSC method with g1 ¼ g2 ¼ 5 (see Fig. 4
(a)) and the corresponding CPU deviation time in second (see
Fig. 4 (b)). Each entry in the x axis represents a set of 10 problems
6

7

< 1-combinations > of 5 classes

< 2-combinations > of 5 classes

< 3-combinations > of 5 classes

Fig. 2 using combination index.

ctural parameters.

http://https://goo.gl/Ge91cF

Table 2
Performance of TSC algorithm compared to CPLEX 12.5

ntot N CPLEXobj TSCobj CPLEXUB CPLEXcpu (s) TSCcpu (s)

500 5 110738 110735 110745 2225 5
10 111446 111162 111446 1692 19
20 139178 139173 139193 2037 84
30 139524 139433 139531 3294 209

1000 5 199778 199773 199820 7789 12
10 219433 219433 219485 5566 36
20 226480 225293 226480 1876 160
30 226536 225843 226654 8274 351

2500 5 555190 555190 555263 4490 161
10 548500 547840 550306 16485 313
20 501682 501716 504939 9840 1045
30 555124 553184 556264 9041 1775

5000 5 1003022 1003006 1003085 14522 319
10 1006494 1006294 1006592 8598 1320
20 1006458 1004563 1009982 12743 3398
30 1012004 1007560 1012251 4709 6539

10000 5 2231298 2231298 2231356 13335 556
10 2012279 2012279 2013341 19615 2144
20 2005891 2014718 2022815 27427 6974
30 2015818 2003318 2016192 13829 14788

M. Khemakhem, K. Chebil / Computers & Industrial Engineering 99 (2016) 280–286 285
with a total number of items ntot 2 f500, 1000, 2500, 5000, 10000g
and N 2 f5, 10, 20, 30g.

As expected, TSC method performance is consistently improved
as g1 and g2 increases. Furthermore, by considering the computa-
tional effort, the pay off seems to be rather poor at the cost of
the expense in computational time. To that end, a TSC parameters
with g1 ¼ g2 ¼ 5 seems to provide a good compromise.

In Table 2, we report the results obtained by the TSC method as
compared to the upper bound provided by CPLEX 12.5 when solv-
ing KPS. Each row summarizes 10 instances. The first two columns

present the total number of items ntot ¼
Pi¼1

N ni and the number of
classes N. The next three columns provide the corresponding sum
of values provided by the TSC algorithm (TSCobj), the sum of values
provided by CPLEX (CPLEXobj), and the sum of the upper bounds
provided by CPLEX (CPLEXUB) which corresponds to the best known
bound of all the remaining open nodes in the branch-and-cut tree.
The next columns present the total running time of the TSC
Fig. 6. CPU time of TSC algorithm without duplication (hatched

Fig. 5. Objective value of TSC algorithm without duplication (hatch
approach (TSCcpu) and the total running time of CPLEX (CPLEXcpu).
Processing times (CPU’s) are reported in seconds.

We note that CPLEX finds an optimal solution for 79 out of 200
problems. For the rest, CPLEX terminates with an error message
(exceeds the capacity of RAM memory or exceeds the limit of
CPU time). The values provided by CPLEX for those problems corre-
spond to the values of the best feasible solutions found with a CPU
time limit of 3600 s. Furthermore, the TSC algorithm provides a
solution equal to CPLEX for 79 problems and provides a new best
known value for 15 problems. The results presented in Table 2
show that the proposed method is highly effective for providing
solutions that are on average at about 0.086%, 0.232%, 0.413%,
0.259% and 0.273% with respect to the upper bound provided by
CPLEX for instances with 500, 1000, 2500, 5000 and 10000 vari-
ables. It is also noted that instances with larger N are more difficult
to solve and that the running time of the TSC approach increases
with the increase of N.

In order to properly evaluate the impact of the new technique of
avoid duplication on the performance of our approach in terms of
computation time and quality of solutions, the results obtained by
the TSC method were compared to the ones achieved by another
version of the TSC method with duplication TSCdup; the results
are presented in Figs. 5 and 6. Fig. 5 (resp. Fig. 6) shows five prob-
lem classes with ntot ¼ f500, 1000, 2500, 5000, 10000g, respec-
tively, and for each problem class, the x axis represents the set of
40 problems while the y axis represents the sum of objective val-
ues (resp. the sum of CPU time) for the set of 40 problems. The
results clearly demonstrate the impact of avoiding duplication on
solution quality and computation time. Compared to the results
obtained with the TSC method, the ones achieved with the TSCdup

method show that the objective value has decreased in 40
instances and increased in 8 instances and that the CPU time has
increased in all instances. A complete and detailed version of the
results is available at https://goo.gl/SjW1gy.
4. Conclusion

In this paper, we proposed a tree search based combination
(TSC) heuristic for the knapsack problem with setup. The TSC is
an iterative local search method that explores the solution space
) compared to TSC algorithm with duplication (unhatched).

ed) compared to TSC algorithm with duplication (unhatched).

http://https://goo.gl/SjW1gy

286 M. Khemakhem, K. Chebil / Computers & Industrial Engineering 99 (2016) 280–286
by generating compound moves in a tree search fashion. An
important aspect of carrying out the TSC processes is to avoid
re-constructing already generated solutions. In order to avoid
duplication, we adopt a new technique that makes a bijection
between a KPS solution and an integer index. This technique
proved efficient particularly in terms of solution quality and com-
putation time. Our method was tested on a large set of randomly
generated problems. The results showed that CPLEX was able to
optimally solve only 39.5% of these problems; the rest had
unknown optimal values. The experimental results showed that
TSC produced good quality (optimal and near-optimal solutions)
solutions in a short amount of time and allowed for the enhance-
ment of the solution provided by CPLEX in 15 instances. Consider-
ing the promising performance of the TSC method presented in this
work, further studies, some of which are currently underway in our
laboratory, are needed to further extend the use of the space reduc-
tion technique to other general and critical problems.

References

Kong, X., Gao, L., Ouyang, H., & Li, S. (2015). A simplified binary harmony search
algorithm for large scale 0–1 knapsack problems. Expert Systems with
Applications, 42(12), 5337–5355.

Martello, S., & Toth, P. (1990). Knapsack problems: Algorithms and computer
implementations. 605 Third Avenue, New York, NY 10158-0012, USA: John
Wiley & Sons.
Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problem. Berlin, Heidelberg:
Springer-Verlag.

Chajakis, E., & Guignard, M. (1994). Exact algorithms for the setup knapsack
problem. INFOR, 32, 124–142.

Akinc, U. (2004). Approximate and exact algorithms for the fixed-charge knapsack
problem. European Journal of Operational Research, 170, 363–375.

Yang, Y. (2006). Knapsack problems with setup Dissertation: Auburn University
(August 7).

Mclay, A., & Jacobson, H. (2007). Algorithms for the bounded set-up knapsack
problem. Discrete Optimization, 4, 206–212.

Michel, S., Perrot, N., & Vanderbeck, F. (2009). Knapsack problems with setups.
European Journal of Operational Research, 196(3), 909–918.

Horowitz, E., & Sahni, S. (1974). Computing partitions with applications to the
knapsack problem. Journal of ACM, 21, 277–292.

Glover, F. (1998). A template for scatter search and path relinking. In J.-K. Hao, E.
Lutton, E. Ronald, M. Schoenauer, & D. Snyers (Eds.), Artificial evolution lecture
notes in computer science (pp. 3–51) (1363).

Glover, F., & Laguna, M. (1999). TABU search : . Kluwer.
Rego, C., & Glover, F. (2002). Local search and metaheuristics for the travelling

salesman problem. In G. Gutin & A. Punnen (Eds.) (pp. 309–368).
Greistorfer, P., & Rego, C. (2006). A simple filter-and-fan approach to the facility

location problem. Computers and Operations Research, 33(9), 2590–2601.
Rego, C., Li, H., & Glover, F. (2011). A filter-and-fan approach to the 2d hp model of

the protein folding problem. Annals of Operations Research, 188(1), 389–414.
Rego, C., & Duarte, R. (2009). A filter-and-fan approach to the job shop scheduling

problem. European Journal of Operational Research, 194(3), 650–662.
Rego, C., & Mathew, F. (2011). A filter-and-fan algorithm for the capacitated

minimum spanning tree problem. Computers and Industrial Engineering, 60,
187–194.

Khemakhem, M., Haddar, B., Chebil, K., & Hanafi, S. (2012). A filter-and-fan
metaheuristic for the 0-1 multidimensional knapsack problem. International
Journal of Applied Metaheuristic Computing, 3(4), 43–63.

http://refhub.elsevier.com/S0360-8352(16)30258-3/h0005
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0005
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0005
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0010
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0010
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0010
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0015
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0015
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0020
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0020
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0025
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0025
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0030
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0030
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0035
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0035
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0040
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0040
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0045
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0045
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0050
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0050
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0050
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0055
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0060
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0060
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0065
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0065
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0070
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0070
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0075
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0075
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0080
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0080
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0080
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0085
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0085
http://refhub.elsevier.com/S0360-8352(16)30258-3/h0085

	A tree search based combination heuristic for the knapsack problem with setup
	1 Introduction
	2 Tree search based combination for the KPS
	2.1 Preliminary considerations
	2.2 The TSC approach
	2.3 Avoid duplication

	3 Experimental results
	4 Conclusion
	References

